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PREFACE
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(CERC). The Office, Chief of Engineers, US Army Corps of Engineers (OCE),
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John G. Housley, OCE, were Technical Monitors for the Coastal Flooding and
Storm Protection Program. Dr. Charles L. Vincent is CERC Program Manager.
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Hydraulics Laboratory of the National Research Council of Canada (NRCC),
Ottawa, Ontario, Canada, and he extends special thanks to Dr. Etienne Mansard
and Mr. Dan Pelletier of NRCC for their assistance.

Mr. Michael J. Briggs, Research Hydraulic Engineer, Wave Processes
Branch (CW-P), Wave Dynamics Division (CW), CERC, prepared this report with
assistance from Ms. Mary L. Hampton, Civil Engineering Technician, CW-P, CERC,
under direct supervision of Mr. Douglas G. Qutlaw, Chief, CW-P; and under
general supervision of Mr. C. Eugene Chatham, Chief, CW; Mr. Charles C.
Calhoun, Jr., Assistant Chief, CERC; and Dr. James R. Houston, Chief, CERC.
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WAVE GROUP ANALYSIS BASED ON KIMURA'S METHOD

PART I: INTRODUCTION

1. High sea waves tend to appear in groups rather than individually.
Engineers are finding that this grouping has important ramifications on the
motions and resonances of moored structures and vessels, harbor resonance,
stability and overtopping of shore protection structures, and surf beat.
Because of the nature of wave grouping, its prediction, control, and analysis

are especially important in shallow-water laboratory basins such as the

Coastal Engineering Research Center's (CERC's) directional spectral wave

basin.

bty :’
LIATS RN
2. This report is the result of research conducted at the Hydraulics &3331
i OV
Laboratory of the National Research Council of Canada (NRCC), Ottawa, Ontario, :inflf
Canada, from 4-20 September 1985. During this time, the original version of f'r"‘
('t £ 08
computer program KIMURS was researched, written, debugged, and tested. The %3;&}
iy
program calculates wave group run probabilities, lengths, means, and standard Jﬁﬂﬁi
‘.,’.."_",
deviations using Kimura's method (Kimura 1980). His method, which is based on Jﬁff‘
the assumption that successive wave heights are mutually correlated, has been L.
u‘,‘ ‘g:‘_‘-'
demonstrated (van Vledder 1983b; Thomas, Baba, and Harish 1986) to be superior ﬁﬁkqt
5 v 4
to Goda's method. rdfiﬂ
b
3. This report describes wave grouping and the differences in theory Yt
between Goda's and Kimura's methods. Additionally, it documents the computer . !1
program KIMURS and serves as a user's manual for program organization, input/ P;kﬂﬂ
Lt n \‘“I
output operations, and test cases, Finally, it provides recommendations for %nhu
AN ‘:%d'
future expansion of the program. A copy of the computer program KIMURS and ol
assoclated subroutines is available upon request. N
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PART II: WAVE GROUPING

4. Bounded long waves are associated with the occurrence of wave groups
and produce a variation of the mean water level which produces a setdown under
wave groups and a setup between groups (Figure 1). Longuet-Higgins and
Stewart (1962) first described this second-order or nonlinear effect which
results from a variation in the radiation stress (proportional to the square
of the local wave height). The forced long wave propagates at the group
velocity of the primary waves. Its amplitude is proportional to the square of
the wave envelope and is relatively small, but it can increase dramatically as
the depth and frequency decrease and wave groupiness increases. The second-
order wave system propagates with phase opposite to the envelope of the first-
order system. A crest of the second-order system coincides with a trough of
the wave group envelope. Second-order currents are also created by the occur-
rence of wave groups. These currents are important in the calculation of
resistance forces of structures and mooring forces for vessels.

5. A succession of high waves that exceeds some arbitrary threshold
value (typically median, mean, or significant wave height) is called a run of
high waves, and the number of waves in this run is the run length (Figure 2).
The total or complete run is the combination of the run of high waves followed
by the run of low waves (i.e. succession of waves which fall below the thresh-
old value). The total run is analogous to the zero-upcrossing period of the
wave profile, except that the time series is composed of individual wave

heights rather than surface elevations., Reference to a wave group assumes

that a run of high waves is intended.
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PART IIT: THEORY OF WAVE GROUPS

Goda's Method

6. Goda's method assumes that successive wave heights are uncorrelated
or independent. The derivation is based on probability theory. If the
probability p* that a wave height H will be greater than a threshold value

H is
c

p = Prob [H > Hc] (1)
then the probability that H will be less than or equal to Hc is given by
q = Prob [H < Hc] =1 -p (2)
since p+q =1 . (Some authors use the symbol H, for the cutoff or

threshold wave height.)
Run of high wave statistics

7. The probability distribution of a run of jl successive high waves

follows the geometric distribution

jl_l
P(jl) =p q i = 1,2,3... (3)

which means that jl - 1 successive waves will exceed the threshold, and the
jfh wave will not. The probability of successive wave heights exceeding the
threshold is equal to the product of separate probabilities for each event
because the wave heights are independent in Goda's (1985) theory.

8. According to Goda (1985), the mean run length EI and standard
deviation of the length of a run of high waves c(jl) are, respectively,

* For convenience, symbols and abbreviations are listed in the Notation
(Appendix D).

BRI N T TN b




e = ) PG =i (%)
iy
o3 = e[37] - 13,0 - 2 (5

where E[ ] 1is the expectation operator.

Total run statistics

9. For a total run of j2 successive waves, the probability distribu-

tion P(jz) , mean 3; , and standard deviation o(jz) are, respectively,

jz-l Jz-l

PG o ® -gq iy = 2,3.4,... (6)
J. o= 3 —l -l;e—l—
PR AT N
2 2. | 2
a(iy = E[35] - E°l5,1 = [+ %5 (8)
q P

Example calculations

10, Example calculations based on Equations 1 to 8 for the probabilities
and mean and standard deviations for the run of high waves and total run are
listed in Table 1 for various values of threshold wave height. According to
Goda's model, measured average group length larger than the values given in

Table 1 indicates a higher level or degree of wave group formation.

Kimura's Method

11, Kimura's model assumes that successive wave heights are mutually
correlated and form a Markov Chain. The concept of mutual correlation implies

that successive waves are dependent or correlated. A high wave rarely appears

by itself; rather, it is more likely to be followed by other high waves. It




Table 1
Theoretical Wave Group Statistics for Various Wave Height Thresholds
Goda's Model

Threshold Wave Height

Quantity Median Mean Significant Highest 1/10
P 0.500 0.456 0.135 0.039
q 0.500 0.544 0.865 0.961
EI 2.00 1.84 1.16 1.04
o(3;) 1.41 1.24 0.42 0.21
3; 4.00 4,03 8.58 26.55
(3, 2.00 2.04 6.92 25.01

seems that the waves have a '"memory" which dictates that one high wave will be
followed by another high wave rather than a low wave.

12, Transition probabilities for simultaneous exceedance and non-
exceedance of the threshold wave height are calculated based on the ratio of
one- and two-dimensional (i.e. joint or bivariate) Rayleigh probability
density functions (PDF). From these Rayleigh-derived transition probabili-
ties, the probability of a run of various lengths, the average run length, and
the standard deviation of the run length are calculated for a run of succes-
sive high waves and a total run,

Markov Chain

13. A fundamental assumption of Kimura's model is that successive wave

heights form the Markov Chain. The transition equation describing the Markov

Chain is

(9)

where

a~]
1]

distribution after n-time transitions

2
]

initial distribution

transition probability matrix

o
[}




If a threshold wave height Hc is selected (i.e. mean, median, significant,
or highest 1/10 wave height), waves with height H will fall into one of two

states or groups as shown below

State Condition
1 H<H
c
2 H > H
c

The initial distribution is then
Po = (0,1) (10)

since a run of high waves begins when State 2 is first reached. The transi-

tion probability matrix is given by

Py Py2
p = (1n
Py1 P22

where the individual elements or conditional probabilities are defined as

!

=
0

==}
[

IA

=]
n

|

Py = Prob [“1+1 <

P, = Prob [ﬁ1+1 > H, | H, < Hc_
- (12)
Py, = Prob [hi+l <H | H > K,
Pyy = Prob ["1+1 >H, | Hy > He |
and Hi and Hi+l represent successive wave heights. Thus, P is the

probability that neither successive'wave exceeds the threshold Hc s and Py,
is the probability of simultaneous exceedance by both wave heights. By sub-
stituting Equations 10 and 11 into Equation 9, processing for n-time transi-
tions and precluding the transition probabilities from State 1, we obtain the
probability distribution for the run of high waves, If simple induction con-
tinues, the probability distribution of the total run can be determined in a

simflar fashion.




Transition probabilities
14. The other fundamental assumption of Kimura's method is that the
transitional or conditional probabilities for wave height, P1y and Pyy »
; are defined in terms of the Rayleigh distribution. The conditional probabili-
:
e ties are
B H H
- c c
S
R [ f p(H, ,H_)dH dH
}”25 : 5 1727771772
"@‘,,‘ =
X P11 H, (13
. f a(H,)dH,
:r‘;:e' 0
t';:‘?!:c
k;‘:‘;‘
::f:'c @ oo
RN
J | ] eapmpanan,
hﬂg‘ H H
ol c c
p Ppy = (14)
;E:Q' 22 o
Ak
ks JIEICRER
5000 Hc
ety
p%gf where
/‘ .
Lt p(Hl’HZ) = joint or two-dimensional Rayleigh PDF for two successive
) wave heights
%&3 HI’HZ = dummy wave height variables
é”: q(H;) = Rayleigh PDF for individual wave heights
WL
f:: 15. The PDF q(Hl) defined in terms of the root-~mean-square wave height
: Hr and the mean wave height Hm is
;:»a
S
vhy
i:& 2Hl Hf » N n Hf
" ® —— - — B = — - ——
g W) = e\ |77 7 P 2 (13)
) r r m m
Ly
"
S 16. The Rayleigh joint PDF is similarly defined by Kimura (1980) based
oty
:{F on earlier work of Rice (1944, 1945) and Uhlenbeck (1943) as
;‘;;l
oy
':n;' 10
"":"

L ) Cn O OU O IO IO N
) !t':f\tnf‘wn’t‘ (ISR R R

ehay
v

Y
RPN y ’



(16)

2 2 2
- " HIHZ exp | ~ n Hl + HZ I K H1H2
2,...4 2 2 o 2 2
41 - kHyHY 41 - &% H ] 21 - <%y W

where x 1s the correlation parameter and Io[ ] is a modified Bessel func-
tion of zeroth order.

Correlation parameter

17. To solve for the joint Rayleigh PDF and the associated transition
probabilities Py and Pyy » the correlation parameter K 1is required.

Kimura (1980) and some authors define it in terms of the variable 0 as
K = 2p (17

Uhlenbeck (1943) showed that the correlation parameter K is related to the

correlation coefficient th(l) » a measure of the degree of correlation or

dependence between successive wave heights, by

(1 - «%) K(x) - 1
3 4

1 -

E(x) -

Rpp () = (18)

]

where E( ) and K( ) are complete elliptic integrals of the first and
second kind, respectively. Some authors use Yh to define the correlation
coefficient. The correlation coefficient range is 0 to 1.0. A value of zero
corresponds to the Goda model., Several investigators (Goda 1985) have calcu-
lated correlation coefficients of 0.24 for successive wind waves and 0.5 - 0.8
for swell, The amount of correlation tends to increase with higher wave
heights and narrower wave spectra.

18, Battjes (1974) demonstrated that an infinite series representation
for the elliptic integrals could be used to approximate Equation 18 as

11




K

4 6
m 2
R (1) =m(" sttt ) (19)

K

6

If this relation is inverted, the correlation parameter « can be determined

given the correlation coefficient th(l) as follows:

K- =R =37 - 3558 = ««» (20)

where

4(4 - m)

(S

Battjes (1974) found that this approximation is very good for correlation
coefficients less than 0.7 to 0.8, From 0.8 to 1.0 the difference, although
slight, is still noticeable.

Methods for deter-
mining correlation parameter

19. The correlation parameter can be determined in one of four ways:

. Time Domain Method 1: assumed correlation coefficient.

lo* o

. Time Domain Method 2: autocorrelation technique,

. Frequency Domain Method 1: Goda's spectral peakedness
parameter.

e}

d. Frequency Domain Method 2: Battjes' spectral derivation.

20. Assumed correlation coefficient. The assumed correlation coeffi-

cient method is the one currently coded in the computer program KIMUR5. The
input value of the correlation coefficient th(l) is based on field measure-
ments for similar wave conditions as the wave height time series to be
analyzed. The correlation parameter « 1is determined indirectly using Equa-
tions 19 and 20 above.

21. Autocorrelation technique. In the autocorrelation technique the

correlation coefficient th(k) is first calculated from a zero-meaned, mea-
sured, or simulated wave height time series. The correlation parameter « {is
determined indirectly using Equations 19 and 20 as before. The autocorrela-

tion function estimate is normalized by the variance of the wave height time

12




series to give the correlation coefficient defined as

It N-k
1 1
X th(k) ;—5 " z HiHi+k k 1,2,3,... 21
A H i=1
e‘,"i
I"
‘4! where N 1is the total number of points in the wave height time series, and
o % is the standard deviation of the series. The lag k 1is the difference in

number between wave heights and 1s equal to i for successive wave heights.

xkf For every other wave height, the correlation coefficient would be written as
i th(Z) » every third wave height th(3) » etc. The dependency between wave
o heights has been found by several investigators (van Vledder 1983a) to

e decrease rapidly as the lag is increased beyond successive wave heights (i.e.
E{?: R, (1))

W 22. Goda's spectral peakedness model. The spectral peakedness model is
R a frequency domain model based on a relationship between wave grouping and

‘gﬁ_ spectral form investigated by Goda (1970, 1976), Yamaguchi (1981), and Kimura

(1980) among others. It is based on the spectral peakedness factor Qp
defined by Goda as

hih

'\‘ Qp == f f ST(f) df (22)
!\5 mo 0

0

3'.-4 where

?7‘ m, = zeroth moment of the time series

,ﬁﬁ f = frequency

ju? S(f) = spectral estimate of the surface elevation

;‘ Goda (1985) found the spectral peakedness parameter to be insensitive to the
ﬁ@' high frequency cutoff used in spectral analysis. 1Its value ranges between 1
$5 for white noise, 2 for wind waves, and 4 to 8 for swell conditions. The

o investigators mentioned above found that the average group length increases as
55 the peakedness parameter increases, and a narrow spectrum has a greater degree
::::.' of grouping than a widebanded spectrum.

:ﬁ: 23, Based on field wave data and numerical simulations for large values

:’"1! 13
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of QP » Ewing (1973) proposed an approximately linear relationship between
the mean run length 3; and the spectral peakedness parameter for a given

cutoff or threshold wave height Hc as follows:

[}

. Q
i - ﬁl’- /Zm (23)
[}

24. Goda (1970) proposed the relationship between the correlation
coefficient th(l) and the wave peakedness parameter Qp as shown in

Figure 3 (obtained from numerical simulations).

04 —

o o
[ 3] w
T T

CORRELATION COEFFICIENT R, (1)
©
T

0 i ! I I
1.0 1.5 2.0 25 3.0
SPECTRAL PEAKEDNESS PARAMETER Q_

Figure 3. Relation between correlation coefficient and
spectral peakedness parameter
25. Battjes' spectral derivation. Based on earlier work of Arhan and
Ezraty (1978) on correlations with joint PDF's and Rice (1944, 1945) on
theoretical envelope statistics, Battjes and van Vledder (1984) showed that

the correlation parameter « can be calculated spectrally by

14




2 2 0.5

[ -] o

.. %; -[ S(£) cos (2nf T ) df| + j' S(f) sin (2nf T ) df (24)

o o

where Tm is the mean wave period obtained from zero-crossing or spectral
analysis. In this sense, the correlation parameter «x 1is a measure of the
spectral width, and Battjes and van Vledder (1984) noted that it is more
"robust" than Goda's spectral peakedness parameter Qp since it is not biased
by sampling variability.

Run of high wave statistics

26. In Kimura's model, the probability of a run of successive high

waves of run length j1 is defined in terms of the transition probability

P,, as
3;-1
P(Jl) = Py, (1 - pzz) 3p = 1,2,3,.... (25)
27. The mean 3; and standard deviation °(j1) are, respectively,
e e (26)
Ty
and

VP22

O(jl) =

Similarity exists among Equations 25 to 27 and Equations 3 to 5 for Goda's
method in which Pyy and (1 - p22) replace p and gq , respectively.

Total run statistics

28, For a total run, the probability distribution P(jz) , mean 3; ’

and standard deviation o(jz) are, respectively,

(L= py (1 = py,) 31 3,1

- P =P 1
Pi Pys 1l 22 2

P(i,) = = 2,3,4,... (28)

15




*
L]
.
*
L
*
]

= + — (29)

o(jz) = ~ + 5 (30)

Again, there is similarity with the total run statistics defined for Goda's

model in Equations 6 to 8,

Comparison of Methods

29. Goda's model for wave group run lengths assumes that wave heights
are independent or uncorrelated, although Rayleigh distributed. Rye (1974),
Kimura (1980), and others have shown that wave heights are positively corre-
lated. Thus, in comparisons with actual field measurements for varving wave
environments (including wind wave generation in storms) by several investiga-
tors, Goda's method vields a constant value for several values of the corre-
lation coefficient that seriously underpredict the degree of wave groupings.
These comparisons of field measurements with Goda's model values for median
Hmed and sigrnificant HS wave height threshold values are listed in Table 2
(van Vledder 1983a) which shows that the measured values for the run lengths
are greater than those Goda predicted.

36. Table 3 shows the results of some computer simulations by Kimura
(1980) for the group lengths of a run of high waves for spectra of various
peakedness and uriform phase distributions. Goda's and Kimura's theoretical
values for five different correlation coefficients are compared with the
simulated data for threshold wave heights equal to the mean and significant
wave height. Kimura's model shows a strong agreement with the data, while
Goda's model gives a constant value that underpredicts the group length,

31. Table 4 contains analogous results by Goda (1983) for the group
lengths of a run of high waves using measured data representative of long
traveled swell with a narrow spectrum and high correlation coefficients.
Again, there is serious underprediction of the Goda model and the reasonable
correspondence between actual and predicted run lengths using the Kimura

model.,




Table 2
Y Comparison of Measured Average Group Lengths With Goda's Model

- Run of High Waves
2y Threshold Wave
W0y
-$4 Time m Height m
Oy Investigator Location Period med s
; Theoretical Data
\: Goda's model (1970) 2.00 1.16
X
o Measured Data
| Wilson and Baird (1972) Nova Scotia May-Jul -- 1.49
L Rye (1974) Norway Oct-Dec -- 1.35
oy
» '?
e Goda (1976) Japan -- 2.54 1.42
"“' Dattatri, Raman, and
‘o Jothishankar 1977 India Aug 2.23 1.34
e
'r‘i’
ey
n'{:"l
a";r
B
s Table 3
LN
.f$ Comparison of Goda's and Kimura's Models with Simulated Data
K Average Group Lengths for Run of High Waves
:Q Threshold Wave Height
Q:ﬂ (N - Mean Significant
N th’ Goda Kimura Simulated Goda Kimura Simulated
.‘g'.ﬁ —— —— B
'j~' 0.19 1.84 2,08 2,20 1.15 1.33 1.28
;’ 0.23 1.84 2.15 2.29 1.15 1.37 1.29
'i' (4
e 0.29 1.84 2.28 2.34 1.15 1.44 1.29
o 0.33 1.84 2.37 2.42 1.15 1.50 1.37
L
N 0.38 1.84 2.46 2,45 1.15 1.57 1,53




Table 4

Comparison of Goda's and Kimura's Models with Measured Data

Average Group Lengths for Run of High Waves
1ge P 21ig

Threshold Wave Height

Mean Significant
th(l) Goda Kimura Simulated Goda Kimura Simulated
0.630 1.84 3.50 3.77 1.15 2,08 2,02
0.688 1.84 3.84 4.15 1.15 2.29 2.49
0.694 1.84 3.89 4,42 1.15 2.31 2.21
18
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PART IV: COMPUTER PROGRAM DESCRIPTION

32. This section presents the documentation for the main program KIMURS
and the eleven associated subroutines required. The intent is to provide the
user with the documentation necessary to run the program. Appendix A contains
a listing of the program and subroutines. Appendix B contains a listing of
the symbols used in the computer program. Appendix C lists definitions of
parameters for each subroutine and gives other documentation including
descriptions, calling statement, calls to and by the subroutine, and

references.

Program Specifications

33. Table 5 summarizes the program specifications for program KIMURS.

Table 5
Program Specifications for Program KIMURS

Specification Description
Computer DEC VAX 11/750
Location USAE Waterways Experiment Station, CERC
Operating system VAX/VMS version 4.2
Language Fortran 77
Structure Interactive, modular, top down
Documentation Self-documenting
Subroutines Eleven, shelf-contained
(Subroutines BESI & QSF from NRCC Scientific
Library) |
Input Interactive with prompts, logical unit 5
Output Disk File KIMUR.OUT, logical unit 2
Accuracy Single precision
(Subroutine BESI requires double precision)
Operating procedure Compile: FORTRAN KIMURS
Link: LINK KIMURS
Run: RUN KIMURS
Input: Enter 5 Input values at keyboard

Output: TYPE or PRINT KIMUR.OUT
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:Qg Solution Procedure
LA
"
v 34. The computer code is presently in the form of a main driver program
,ﬁs and eleven associated subroutines. Figure 4 is a flowchart illustrating the
(A
;gsz basic steps involved in program calculations. Table 6 lists the hierarchy of
)
:kk: the individual subroutines in the program. A brief description of each
]
'% subroutine is contained in Table 7. The steps indicated in Figure 4 (1-D
' = one dimensional; 2-D = two dimensional) are described in the paragraphs
S+ below.
[
o
o INPUT
Input Parameters
-
;‘\'I ..................
e, |
i;t: ----------------------
o KAPPA
o Correlation Parameter
e T |
B e e
WS RPDF
) 1-D Rayleigh PDF
42! _---___-] __________ .
e e -
. RJPDF
O 2-D Rayleigh PDF
o)
.’.‘ ——————— - - - e .
W
i3 I A
i RTP
i Rayleigh Transition Probabilities
%i‘l ....................................
N |
2 de
:'h;. -------------------------
oy HRUN
‘ﬁu Statistics of Run of High Waves
gy ———— — -
:;.s- -------------------------
A TRUN
g'. Statistics of Total Run
_l‘ -------------------------
A |
P e e e
N OUTPT
13 Output Results
/% S S
2 Figure 4. Flowchart of Program KIMURS

oy 20

! 3 - p—
R HERE R T e MR LIS AN AR\ RN LAY 3,
’ : . Sy
i , [T -

L) M
N
Voot

b




Table 6
Hierachy of Program KIMURS

Main Subroutines
Program Level 1 Level 2 Level 3

KIMURS INPUT
KAPPA
RPDF
RJPDF BESI
RTP RTPI QSF
HRUN
TRUN
OUTPT

Table 7
Description of Subroutines in Program KIMURS

Name Description

INPUT Queries user for input parameters

KAPPA Calculates correlation parameter K given correlation coefficient
RHH(1) using series approximation method of Battjes

RPDF Calculates 1-D Rayleigh PDF Q(Hl) for individual wave heights
RIJPDF  Calculates 2-D Rayleigh joint PDF P(H1,H2)

BESI Calculates Bessel function Io of zeroth order (NRCC Scientific Sub-
routine Library)

RTP Calculates Rayleigh transition probabilities P11 and P22
RTPI Integrates 1-D and 2-D Rayleigh PDF's Q(Hl) and P(H1l,H2)

QSF Computes vector integral values for a given equidistant table of func-
tion values using combination of Simpson's and Newton's 3/8 Rules
(NRCC Scientific Subroutine Library)

HRUN Calculates run of high wave group statistics of probability of dif-
ferent run lengths, mean run length, and standard deviation of run
length

X

TRUN Calculates total run group statistics of probability of various run
lengths, mean rin length, and standard deviation of run length

OUTPT Outputs results to disk file for display and archival
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Correlation parameter

35. The first step in the solution procedure is the calculation of the
correlation parameter K from the input correlation coefficient RHHl. Sub-
routine KAPPA performs this operation using the infinite series approximation
for the elliptic integrals given in Equation 20.

Rayleigh probability density function

36. The second step is the calculation of the 1-D Rayleigh PDF by Sub-
routine RPDF, The Rayleigh PDF given in Equation 15 for the mean wave height

is programmed with the dummy wave height variable Hl defined as

H1 = N * DELH N =0,1,2,...NH (31)

Descriptions of the symbols used in the computer program are contained in

Appendix B.

Joint Rayleigh
probability density function

37. The next step in the solution procedure is the calculation of the
joint Rayleigh PDF by Subroutine RJPDF using the mean wave height form of
Equation 16. For ease of programming, it is calculated in terms of three

factors as

P(H1,H2) = A * B * C (32)

where the A factor is a constant term, the B factor is an exponential term,
and the C factor is the modified Bessel function of zeroth order. Again,
dummy wave height interval variables Hl and H2 are used and defined in the
range

H1 N * DELH

N =0,1,2,...NH (33)
H2

N * DELH

38, The modified Bessel function of zeroth order is evaluated in Sub-
routine BESI, which was obtained from the NRCC Scientific Subroutine Library.
It was verified on several test cases using a Chemical Rubber Company Handbook

of Mathematical Sciences (1978).




Rayleigh transition probabilities

39, The fourth step is the evaluation of the Rayleigh transition
probabilities P11l and P22 using Equations 13 and 14, respectively., Subroutine
RTP sets up the proper lower and upper array element integration limits of the
1-D and 2-D Rayleigh PDF's (i.e. NL and NU, respectively) for the particular
cutoff (i.e. threshold) wave height HC selected. For the Pll transition

probability, the lower and upper array elements are, respectively,

NL =1
(34)
HC
NU = OFLH
Similarly, for the P22 transition probability, these limits are
HC
NL = DELH
(35)
NU = NH + 1

40. Subroutine RTPI is called by subroutine RTP and calculates either
transition probability P11 or P22 given the proper lower NL and upper NU array
element integration limit. The discrete 1-D and 2-D Rayleigh PDF's are inte-
grated numerically using Subroutine QSF, obtained from the NRC Scientific Sub-
routine Library. A dummy 1-D array at equidistant points is evaluated using a
combination of Simpson's and Newton's 3/8 rules. It has been thoroughly
tested by NRC.

Statistics of run of high waves

41. The fifth step is the calculation of group statistics for a run of
high waves based on the transition probability P22. The probabilities for
various run lengths PHR are calculated using Equation 25. The mean run length
JIM and standard deviation of run length SIGJ1 are given by Equations 26
and 27.

Statistics of total run

42, The final step is the calculation of group statistics for a total

run using transition probabilities P11 and P22. The probability distribution

23




PTR, the mean run length J2M, and the standard deviation of the run length

SIGJ2 are defined in Equations 28, 29, and 30, respectively.

Input and Output Variables

Input variables

43, Subroutine INPUT queries the user for the five variables listed in
Table 8. Figure 5 is an example of the input required. The value of RHHl is
dimensionless and should be between zero and unity. (See Part II1 of this
report for range of values for typical wave conditions.) If an actual time
series of wave height measurements is used, then the parameter NH should be

equal to the total number of points in the series. Otherwise, a value of NH

Table 8

Input Variables

Variable Description
RHH! Correlation coefficient
NH Total number of wave height measurements or total number of inter-
vals of dummy wave height variable Hl1 and/or H2
DELH Wave height increment between successive HI or H2 wave heights
HM Mean wave height
HC Threshold wave height

$ RUN KIMURS

ENTER 1 FOR TEST CASE:
2

[

ENTER WALUES FOR:
FHH1 CORRELATION COEFFICIENT
MNH TOTAL # OF WAVE HEIGHT MEASUREMENTS
DELH WAVE HEIGHT INCREMENT
UPFPER WAVE HGHT INTEGRATION LIMIT = NH * DELH
Hr MEAN WAVE HEIGHT
HC THRESHOLD WAVE HEIGHT
58 400 0025 .33 .33

FORTR4N STOF
Figure 5. Example input format for Program KIMURS
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of 400 has been found to give reasonable results. The program is dimensioned
for up to 500, however. The third input variable, DELH, corresponds to the
width of the class interval in a nondimensionalized histogram or distribution
function of wave heights. The smaller this value, the more accurate the
results. The product of NH and DELH gives the upper wave height integration
limit HU which should be greater than or equal to the largest wave height in
the time series. The mean wave height should be determined from the time
series if actual wave heights are used. According to Goda (1985), the
relationship between the maximum wave height Hmax and the mean wave height

Hm is approximately
H =0.31 to 0.39 H (36)
m max

since the significant wave height HS = 1.6 Hm and Hmax = 1.6 to 2.0 HS ’
depending on the number of points in the time series. A value for Hm of
0.33 is representative of a Rayleigh distributed wave height for Hmax =1.0 ,
assuming the statistically derived maximum wave height is equal to the largest
wave in the time series of wave heights. Finally, the threshold wave height
can be equal to the mean, median, or significant wave height. Formulas

relating these three parameters are

H = 0,939 H
med m
(37)

H =1.597 H
] m

Output variables

44, Output variables are written by subroutine OUTPT to a disk file for
later viewing or printing., Figure 6 is an example of the output file
KIMUR.OUT. The five input variables are listed along with the upper wave
height integration limit. The correlation parameter K and the two transition
probabilities P11 and P22 are written in the "output variables" section. For
a run of high waves, the probabilities PHR of a run of successive high waves
of run lengths of 1 through 25 (in 10F7.3 format), the mean group length, JIM,
and the standard deviation of the group length, SIGJl, are given. The first
element of PHR corresponds to the probability of a run of length 1, the second

element 1is the probability of a run of 2 waves, the third a run of
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RO T

RESWLTS FROM PROGRAM KIMURS
GROUP RUN LENGTH STATISTICS

dekdkk INPUT VAR [ABL E Sk

CORRELATION COEFFICIENT, RHH1l = 0.6800
TOTAL # OF WAVE HEIGHT MEASUREMENTS, NH = 400
WAVE HEIGHT INCREMENT, DELH = 0.0025
UPPER WAVE HGHT INTEGRATION LIMIT = 1.0000
MEAN WAVE HEIGHT, HM = 0.3300
THRESHOLD WAVE HEIGHT, HC = 06.3300

*hk XA QUTPUT VARITABLESkokdokk

CORRELATION PARAMETER, K = 0.8359
PROBABILITY NEITHER H1l NOR H2 EXCEEDS, P11l 0.76l7?
PROBABILITY BOTH Hl & H2 EXCEED, P22 = ¢.7202

hhkdhHIGH WAVE RUN GROUF RESULTShkdkdk
PROBABILITIES, PHR:
0.280 0.202 ©.145 ©0.1805 0.,07S
0.011 0.008 0.005 0.004 0.0G3
0.000 0.000 0.000 0.000 G@.,000

D]
.

0.039 0.028 0.020 0,019
0.001 0.001 oO.001 0.001

o

oo
(=31
[LP 2%

MEAN GROUP LENGTH, J1iM = 3.5743
STO DEV GRUUP LEMGTH, SIGJ1 = 3.0334

*k¥kk TOTAL WEVE RUN GROUP RESULT Skdkksk

PROBGBILITIES, PTR:
0.000 0.0867 0.099 0.110 0.10% 0.101 0.0%0 0.078 0.066
0.04% 0.037 0.030 0.024 0.019 0.01S 0.012 0.010 0.00%
0,005 0.004 0,003 0.002 0,002

N
SN

[ec}
"
[l

MEAN GROUP LENGTH, Ja2M = T.FFLS
STD DEV GROUP LEMGTH, SIGJE = 4,75561

Figure 6. Example output format from Program KIMURS
3 waves, etc. Similarly, for the total run, the first 25 probabilities PTR of

a run of length 1 through 25, the mean length, J2M, and the standard deviation
of the run length, SIGJ2, are given,
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PART V: PROGRAM VERIFICATION

45, In this section, verification of the program with sample test cases

is described and discussed.

Test Case !

46. The first test case 1s based on actual wave height data. Goda
(1985) describes an example of 97 waves with a mean wave height of 2.1 m. The
wave heights are distributed in a range from 0.1 to 5.5 m. Thus, the inputs
to Program KIMURS5 are RHH! = 0.68, NH = 97, DELH = 0.0567 (HU = NH * DELH
=5,5m), and HM = 2,1, Table 9 summarizes the results for three test cases
for each of the mean, median, and significant wave heights as threshold wave
height (using Equation 37). The effect of various threshold wave heights on
the value of the run length calculated is readily apparent. The calculated

values appear to be reasonable when compared with Goda's.

Table 9

Summary of Test Case | Results

Transition
Threshold Wave He{gbt Probabilities Mean Run Lengths
Description HC Pl1 P22 High Total
Median 2.0 0.727 0.735 3.775 7.431
Mean 2.1 0.753 0.719 3.554 7.594
Significant 3.3 0.922 0.543 2.186 14,922

Test Case 2

47. Van Vledder (1983b) calculated the transition probabilities P11 and
P22 and the mean run lengths JIM and J2M for various values of the correlation
coefficient RHHl and threshold wave heights of the median, mean, and signifi-
cant wave heights. For a nondimensional maximum wave height of 1.0, the fol-
lowing inputs were used in program KIMUR5: RHI = ,68, NH = 400, DELH
= 0.0025, and HM = 0.33., Table 10 shows the comparison between the KIMURS
calculated values and the van Vledder values (given by van Vledder to four

significant places). The average percent error listed is the average of the
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Table 10

Summary of Test Case 2 Results

. Transition Average
Threshold Wave Height 0 Probability Mean Run Length Percent
Description Source c Pl] P22 J1IM J2M Error
Median van Vledder 0.7371 0.7371 3.8037 7.6073
KIMURS 0.31 0.7334 0.7378 3.8146 7.5650 0.08
Mean van Vledder 0.7651 0.7197 3.5674 7.8243
KIMURS 0.33 0.7617 0.7202 3.5743 7.7715 0.35
Significant van Vledder 0.9314 0.5592 2.2686 16.8359
KIMURS 0.53 0.9315 0.5525 2,2348 16.8360 0.67

absolute values of the four errors between the two transition probabilities
and the two mean run lengths. These errors are defined as the difference
between van Vledder's and the calculated values for each quantity divided by
van Vledder's value. Thus, the average percent error is less than 0.67 per-
cent for all cases tested and shows very good agreement with van Vledder's
results.

48. Van Vledder* recommends that the total number of increments NH
should be greater than 150 to 200. Table 11 lists the differences in
calculated values for a threshold wave height equal to the mean wave height
for various NH values of 50, 100, 200, 400, and 500. The average percent
error between the program's values and van Vledder's decreases markedly for

increases in the number of intervals.

Discussion of Results

49. The agreement of the KIMURS model with van Vledder's calculated
values is excellent, Many factors could account for the slight differences
observed. According to van Vledder,* his program is dimensioned for double

precision, explicitly calculates the 1-D Rayleigh integral, and uses a

* Personal Communication, 2 January 1986, with Dr. G. Ph. van Vledder, Delft
University of Technology, Department of Civil Engineering, Delft, The
Y Netherlands.

28

OO

BaN8s
o i’;_l.. B "n ’



f; Table 11
..e Effect of Various NH Values

Transition Average
- Probabilities Mean Run Lengths Percent
;ﬁ}. NH Pl1 P22 High Total Error
K van Vledder 0.7651 0.7197 3.5674 7.8243 --
\-;"b
{R‘ 50 0.7219 0.7445 3.9141 7.5105 5.70
100 0.7514 0.7268 3.6605 7.6837 1.79
’ﬂ& 200 0.7584 0.7224 3.6025 7.7408 0.83
v 400 0.7617 0.7202 3.5743 7.7715 0.35
" 500 0.7624 0.7198 3.5687 7.7778 0.25
l“:‘!
e
e
ka. maximum wave height value of 10 times the mean wave height as the upper wave
(Jl height integration limit. His program also iteratively checks for the optimum
23? number of steps to use in calculating the values of the joint Rayleigh
aﬁg integral.
AN
Qﬂﬁ 50. My investigations showed that double precision did not make any
.. noticeable difference (to E-04 precision for the output results) for a value
9
1;% of NH of 100. Different programming techniques, the numerical integration
v
Sy routine used, explicit calculation of the 1-D Rayleigh integral, and the
l"‘i'
ﬂ:ﬁ method of selection of the lower and upper cutoff limits in the integrals
J probably account for the slight differences observed.
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PART VI: SUMMARY AND RECOMMENDATIONS

51. The coastal engineering research community has recognized the need
to model wave groups as well as spectral waves. High waves in groups can pro-
duce more damage than isolated high waves, and engineers are finding that this
groupiness has important ramifications in the motions and resonances of moored
structures and vessels, harbor resonance, stability and overtopping of shore
protection structures, and surf beat. Wave grouping is especially significant
in shallow-water laboratory basins such as the CERC directional spectral wave
basin, The control, prediction, measurement, and analysis of wave groups are
necessary for CERC to fuifill its mission of advancing the state of the art in
coastal engineering and laboratory physical modeling.

52. Successive wave heights are dependent phenomena. Thus, the Kimura
model is a better predictor of run lengths than the Goda model. The computer
program KIMURS gives excellent agreement with van Vledder's values. Addi-
tional development and testing with simulated and measured data might lead to
better agreement.

53. Future enhancements might include converting the main program to a
subroutine so that it can be called from a SIWEH analysis and/or spectral
analysis program. Presently the correlation coefficient is an input param-
eter. An option could be to calculate it directly, from the wave height
time-history using an autocorrelation procedure, or spectrally, using Battjes'
or Goda's method. Finally, the Rayleigh PDF's are calculated using the mean
wave height. An option to allow the use of other wave height values, such as
median and significant wave heights, could be included.

54, Correlation among the spectral peakedness parameter, the correla-
tion coefficient, and the groupiness factor obtained from a SIWEH time-history
could be investigated further. Also, additional research into the relation-
ship between the groupiness factor and the degree of grouping in simulated
data and wind-generated waves would be beneficial to increase our understand-
ing into wave grouping physics.

55. An analogous program could be developed for the groupiness statis-
tics of successive wave periods which fall within a certain period band.
Usually, values between 0.7 to 1.2 times the mean wave period are most impor-
tant, The development for wave periods again assumes the time series of

periods is mutually correlated and forms a Markov Chain. Kimura (1980) showed
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that the Weibull distribution would replace the corresponding one- and two-
dimensional Rayleigh distributions. The spectral width parameter was the
analogous spectral parameter (i.e. spectral peakedness for heights) most

closely associated with the correlation coefficient for wave periods.
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APPENDIX A:

LISTING OF PROGRAM KIMURS5
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PROGKkAM KIMURS
SINGLE FRFCISIOMy PANUAL INFUTe DIMENSICNEC FOP 50h1 ARRAY SIZE

PRCGRAM TO CALCULATE GROUP RUN LENGTH STATISTICS SASED ON KIMURA®S
METHOD. THE TIME SERIES OF WAVE HEIGHTS ARE ASSUPMECD TO RE MUTTUALLY
CORRELATED AND FORM A MARKOV CHAIN, TRANSITION PRCFABILITIES ARE
CETFRMINED FROM THF TWO~DIMENSIONAL RAYLTZTIGH JOINT +ROEARILITY DENSITY
FUNCTION FOR SUCCESSIVE WAVES, FOR BOTHF A FUN OF +IGH WAVES AND A
TCTAL RUNe THE FROEAPILITIES OF RUNS OF TIFFERENT LENGTHSe THE AVERAGE
RUN LENCTHe ANC THE STANDARC DEVIATION CF THE RUN LENGTH ARE CALCULATE
REAL QC501)4PHR(2S)I9PTR(2EL

REAL KedlMeu2M

REAL P(SC14%01)

DATSA RHF1oNHoTFLHeRMoHC/e6R1997900567920197e1/

OPFN NISK FILE FOR OUTPUT
CPEN(UMTITZ24FILE=OKIMUROUT* ¢ STATUS='UNKNOWLN®)

CUTFY USEF FOR TEST CASE

WRITE(€010)

FORMAT (/9% FATES 1 FCOR TESY CASE: *)

REARN(Rq+) IATK

IF(IASK oFffie 13 GC TOQ 2P

IMFUT PERAMETFRS

CALL INPUT(RHH19NHoLELFoHM4HC)
CALCULATE KAFFA CORPELATION PARAMETER

CONTINLE
CALL VEFPA(RKEH] 9K)

CALCULFTF RAYLFICH PROEABILITY UENSITY FUNCTION G(+Y)
CALL RFLF(NFoCFLEgFMeG)

CALCULATE SAYLETIGH JCINT ¢eCIALILITY GERSITY FUNITICN £ €F14H2)
CALL RJPDF (hhelFLHeHM oK oP)

CALCULATE ~AYLEICH TRANSITIUN PROUBALILITIES =11 & #icZ
CHLL RTFON-olELroHCoQoFoF114F22)

CALCULATE MIGH RUN STZTISTICS

CALL FPUMN(DI29F R gL IMe5IGUT)

CALCULATE TOTAL =UN STATISTICS

CALL TRU(P119F 2¢FTReJZMeSICGUD)

OUTFUT FEZLILTE TC TERMIMAL (R LIKE FRIPTFR

CPLL CUTFTU Ml oAHQUELHGHMgrCoFaluo b gPll ok qPHiKgul¥eSICL] e
PTE au2FeSILUZ)

A2

EMUAOUOL MO0
v byt

[PLIE
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Lo da b0

t
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bi
e sTre
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;\?! END
t:: c
o SUPFOUTINE INPLT(RFH14NHyCELHeFrMoHC)
* c
- c QUERIES USER FCR IANPUT FARAMETERS FOR KIMUKA®*S CGRGUF LENGTH PROCRAM
,(‘ C
R WRITE(6410)
A% 10 FORMAT (/4% ENTEF VALUES FCPR: %,
e [3 /e® RFHI CORPELATION CCEFFICITNT °
A (] /9% NH TOTAL % (F WAVE HEIGHT MiASUREMIRTS *4
) L3 /¢* CELH WAVE HEICHT INCREMENT ¢,
C & /e° UFPER WAVE FGHT INTECRATICN LIMJT = MAh = DELH®,
_,Q L /4® HM VEAN wAVE HTIGHT @,
i)‘ S /e* HC THRE SHOLI® W2VE HEIGHY *)
&) REZC(Ea®) RHH1gMHoNELK oM yHE
e c
Y RETURN
ENC
i
SU.FOUTINE KAFFA(FHELgK)
c
o CALCULATES CORKTLATION PAREMFTI® K (KAPHA=Z+PH() CIVEN CORFELATION
c CCEFFICIENT PHHMY C(ALSC Ki:OW\ £S GANMA(M)) USING SEFIES AFPYUXIMATION
c METHOL CF EATTUES FCR ThHE FLLIPTIC INTECRALS CF THF 1ST &8 AT KIANL.
I
REML KotrZ
o INITIALIZE FARAMFTERS
¢
PI = 4. » £TANC1W0)
C = (l€e = 4o # FIY / FI
.
}ﬂ* z PARFA E
& ~
Tagt R 2 C + RhH1
:‘»1 F2 = F *+ F
Iney F2 = R » FC
X K2 =k = PZ/l6e = 27/107
’ K = SOFETUKD)
9] :
vex ¢
) 4 RETUFRN
"y ENT
)
o .
e SU' FOLTINE FPLH *NHel ELhehM ()
e C
"y c CALCULATES 1=D SAYLEIGH FROCAEILITY CENTITY FONCTICY Lek1)a
- C
~.~} ¢ INTUT VZRIEILES
L~y " AH T8 CF TUTETVALS CF TreY wPWF RTTer TV Rfe tior]
;ta T LEL SOLTLTA IPCru®id T F 7 Taber C1(CLT IV v 1 Wiy HpLleRTs
<0 c Ky = MEAL WEVE RELCPT
) ":, r
» [y
'@y ( GUTFUT VAETAFL: <
v - 6 = 1=f FOYLETGR FROTLITLITY PINSTIY FONLTICN L C(HDD
.' » (.
:”‘h . BELL C(tr])
Yl
Yy L I*TTIAL"2ZF FONCTENTS
1y c
W, e
o
W
c:l X
o Al
o b
K
|
o
';;"lh
]
L
M 0 WG L0 OO0 : A Dl N L st O K O A R IO i
e l B "‘““,"‘: “:l?" ""‘?.@’3.1!.‘"‘{.‘.323lI'.l"?‘2."....5..““'!‘?..‘!....5.!'“."?. 1"‘:."3 .'i‘. ‘h,\.t W N ." ’-‘A:?‘lb» A \'—‘;‘Q;""tﬁ?'hﬂz‘f“;j‘vt ) b g



¥
&
i P102 = Zo + ATANC(1,0)
3 PIGG = FIC2 / Ze
. HM2 = HM ¢ EM
QL = PIC2 / kM2
@2 = PI0& / HM2
Lt NHP1 = MH * 1
W c
Xy c RAYLEIGH PDF
o ¢
e 0o I=1sNhF1
: H1 = (I=-1) « CELFk
) H12 = H1 * N1
L G(I) = (A1 » K1) *» EXPU= G2 ¢ F12)
. END DO
., ¢
“ RFTURN
" END
" ¢
SUCROUTINE FUPIS(NHeNFLHgHMoKyF)
By C
12 C CALCULATES 2-D “AYLFICK JCINT SFOEAGILITY TeNSITY FUNCTION S(H14H2)
) c
" ¢ INCUT VERIAALES
! r NH = TOTAL t WAVE HEIGHT INTERVALS CF TUMMY VARIAELE K1 & H2
' c DELH = GELTA IMCREMENT TETWEEN SUCCESSIVE WAVE HEIGHTS
C HM = MEAN VEVE FELIGHKT
] c ¥ = CORRELATICN FAFAMETER KPPFA
c
! n QUTFUT VARIBBLES
0o c P = SLYLEICH JNINT FOF PC(H14H2)
4 C
¥ POUELE FPECTSIGN TxebI (1)
KEAL C50145G1)
W RE®L X
“: ~
W8 2 INITIALIZE PAPAMETFFRS
r: FI06 = ATAN(140)
i PI0? = 2. + PICHG
(Al PY = 44 « PT04
y PI2¢4 = F1 » PICY
- HM2 = HM & HM
- kM4 T HEQ ¢ RMD
" CK2 = 1.0 = K + K
K 81 = F12C& / (KHFG o CR2)
KX Rl = ETF6 / (HVMZ » (K)
o Y1 = (PICZ » KY / (HM2 * (K:)
o NHF1 = MH o+ ]
~ c
E n RAYLEIGH JOINT FROEASILITY CENSITY FUNCTYION, P(H14FZ) = A « E ¢ C
't -
. oe 1214vhe]
52 r TUMMY M1 WAVE HEITHT VEFIARLE
o 1 = (I=1) = TELF
Fle = K1 » K1 |
3 L0 J=14KHPI !
A ¢ CUMPY KZ WaVe hFICHT VAFIATLE
Py HZ = (J=1) + (ELH
0 b2l = ml e +2
e HIHZ = H] * H2
K < A FACTCE
n
!0
) :

A4

RS .A 0 ".:"'»‘:","}‘-*\,»’h"‘!,n Lq‘_.‘g..‘:g; B

BLAR A 1Y ST WA OO IUIOINNON0OSGHAN
B R R R N e A ORI O



A = 81 « F1HZ
C B FACTLR
B = EX®(= L} » (K12 ¢ HZ2))
C X AFGUMENT FOR MOCIFIEDL RESSEL FUNCTION OF 2EPC ORODER
X = X1 = HIt?
Ox = CPLEC(X)
o MOCIFIED BESSEL FUNCTYICOK OF ZERC ORFER
CALL BESIC( oDXotiel)
[ C FACTCR
C = EXFIX) » FI(1)
¢ FCRMAT(2IS«6F1063)
(o RAYLEICH JCINT PCF
Plled) = & ¢« E =« (
C WRITTF(EGE) TolqAabgXebEIl1)eCeF(lod)
FvD OC
ENF DC
RETURN
END
C
SUCEQOUTINE FESItNgYe™ToLOG)
L VERSION lef = 7¢ PU(e 1%86

~
R R PR R R T R R R R R R R R R R R R R R R S NS R RS A R SRR IR RS RS ANREIRER RS R RS XX
CroRt Rt 2Rt R AR RCE PRI 2004003000094 03300000000ttt tnt sttt vinddadbttnttdnd

Crsastsddtnnsted SIPARPE RGP RT RGOSR PASIRROIETSRS
Coaspasnstnntinsnnd SR OUTINE « ESY SEARNCNE N RAR R AN AR AR PR ARST RN
Craernstattt et X Y R R R R A R R XA X R XXX

CORBRBRA A AR R A BRI 0CE P04 P03 4033000434940 PR RN AVARPERPAC A AARCROANRAETS
IR IR SRR R R E R R AR R 2R R R R R A R R R R R R R A R R R AT R R R NSRRI R ]

Ce .
: focosaecacane == LR T L E AL PR R AR AL AL LA R A XL L L XL R XL X L 3 X Ll X L X bt Lk 2 3 ]
Ce SURFCUTING SUMNM2RYV .
ftemensrccarncnccceccccccnn= em——- DT R e L LR L L L L X
Ce -
C» CALCULATES THE VALLF CF THE BESSEL FUNCTION Iy UEXF(=XVellKoX), @
Ce *
e P Y T T Ll el e R e coceccaceosassetacoasccacaand
Ce SU: FCUTINE TESCLHIFTICM *
C foecnorcoscaveecne e = LI R LRI R R LI R LT RN T LD L X LA Rl LAttt Ll ]
ce .
Co THIS SU RCUTIME CALCULATES THE VALUE OF THF FUNCTICA »
o CFXPC=X)*T(KeX)y WHEQE T IS THE BESSEL FUNCTICN CF PON NECATIVE
Ce INTEGRAL (CGLFR rzCeNe ARD (N “ECATIVE FEAL ARGUET Xo ALL .
Te CALCULATICLS A-F IN COUFLE "RECTISION. .
~a *
C. ----- - e - - LI R L LA L I LA L L LY R R L L R LAl X LR Sl il R ol ol kbl ]
Ce INFUT PRRAMFTFRES *
C."'---------- PR R XL L LY LRI L AL ERE Y LR AL L XL L Ll L A LA A XL X LA X 37
Ce ¢
Co N = Tht AK[F® CF THF TFUCFL FUNCTION I (r=Q) .
fe ¥ = TKD KCU'EMT OF ThEt .ESStL FUNCTION i (x=0) .
C- .
c' P T Y PR Y bttt ittt ettt bttt ettt b R L LR Y
e OUTPUT FaravETCEECSS .
C ! ARG S PR ESETST TR AR R EERASS R ERGrER SRR LR EREaDE SRn o e cosceomenad
ok ] .
Ce BI = 2 Cre [IMENSIONSL ARFZY CCNTEINING THD VELLE (F THE .
Co FLACTION TEXLE=X)ofCKex) N [TS Kol FLEMELT FCR R=Uobe ¢
Cs ThE PIMELCION OF €1 10 THE CALLING FROGREM MLET + & AT .

]




{2
&_ Ce LEAST Nel. .
" ' Ce .
5 Ce .
o c.---—--—--- -------- LR A R L e Rt d e e o el L AL L L B D A L L g
Ce SUFROUTINES ANC FUNCTIONS CALLED: .
Ctecmccccccccccccccccncccccnccccrcammmmersee e e anececce e anmcccacaas
Ce .
Co NAME LESCFIPTION .
Ce '3
Ctemeccccccmccccccrmaccrcanancccancameercecceerccecasencnccnmcanaceemanat
Co ERFOR CCLES: .
c'----------------- ----- - e S . -'------------------------‘----------.
2 Ce *
QS; Ce AN BPPFOPRIATE MESSAGE IS wRITTEN TO THE LOG WHEN X<0 CF M<le N
‘ Ce ”
-_ c.---------------------------------O-----------------------------------.
7’1.‘ e -
i Co SUSROUTINE CREEYICH CATE AML AULTRORS .
Ce VEBESIGN 1.5 - (1 SEET 1¢70 .
e Ce - NFC COMFUTATION CENTKE o
‘.'Q Ca «
‘b (ftecrcnccnccccacccee R B R L X T L crcccacnent
‘,'::. Cs .
N Ce  SUBSOUTINE PCOIFICATICNS: .
R e .
Ce VFESTC? CATF BUTHOR/FIOM .
X re 15 {1 SeFT 1570 NRC COMPUTATICN CENTHE .
b X C» *
. Ce CESCRIFTICAS TRICINAL .
> Ce .
b Co 1.6 Ne DECe 15F4 GOFTON FOUCENE sLMP .
\." Ce -
Ce OCFSCRIETIGNS THF SUFRCLTINF W3S UFDATF' TO RFFLECT CUFREMNT .
" Ce GECAL F“CCRAM STA'DARDSe N
& Co .
t; C.‘...'.'...'".."’.Q...""'t.ii'.'...'.'.’.'.'...'.'....'.""...."'
, r
b, IFCLICTIT FCUELE PRFCISION (L=bel=2)
* PEZL Te<LRCCT
;) CIMENSICN TIC1)
o DATA DMTN/C.535T760524652417-37/0AMAX/142526T242773 70418/
) c
.$: ¢ AMAXeDMINZ04CSEC5C5E9C8699pN 19
v .
{&s c CHECK THE PRCU‘EATS
", c
L IF( eGFad) 6O TO 1
- WRITECLCGy106) AgX
WY 100 FORMAT(/10)>9*FCC] REAATIVF LRCLMENT. ORGER="e1114? ARGUMENT=®,
Q. P Tov 167D
. gIr1)=n
gq FETURM
o 1 N1:zhe1
IF(XeGTolalr=F) r¢ TO ¢
,. IF(xeGEeOLCG)Y 20 TC 2
" WRITE(LCGa1RE) *gX
il N0 7 T2714MT
_$: 2 ElCI)=t
. RFTUPN
B c
v
]
20
l'.
I.',

BRI e WA SRS WA s _ OO A LA A S o R '
OB (/0 1y RPN 3 et 4 ¥ Wt
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OO0 N

[N e

(e Nel

e e 8]

T(KgX) = (X/Z)eeK/ (K FACTOFIALY'FOR X < 147D=8
DEXF(=X) = 1eDC=X FCR X <= 1.,0r=8

3 BIC1)=1.D0=X
IF(NEGSC) FETUFN

ISk=0

IF(XEGe0DO) I5W=1

Az0.00

IFCISNeEGe0) A=24'0*DMIN/X
L0 S I=1eh

EI(Iel)=CeCP
IF (ISW.EQe1) GC TO €
IF(-IC1)eGTeA*T) GC TO &
ISw=1
[CIANND S G

4 ClCT11)=RICI)ay/(2s])

% CONTINUC
RETURN

CALCULATE STARTING FOINT FCF BACKWARD RECURKENCE

e T=x
SAROOT=CSCRT(T)
N2=M1
IF(TaGTa20406) CC TO 7
M=10eC  #T=Ftoll oS (T=0el2) =102 70BFS(T=14T723)=ColTeRb(T=E,71 014,11
cc 10 »
7 FMzICROCTs (=N 62101182 afER(T=1C,0£839)e " 6F IACTE=20
P PFC(Tobl4 F2321 )40 41397544 =20 AES(T=131.7504)40,-336472E~4r
T AC ST = 4T oBER )0 I2RIIEL1E-62APS(T=23001e16)e8,58(6)¢1,0
& IF(MeCF oN) GO TO 1L
M=
IFEtT,GT14.,%) 7f TC G
MPMAYZ AT1€6 72071 =2610T 56087 (T=(el00E=3) = 2¢ce0fofEL(T=Ca514i=2)~
A SCelév Al S T=Cal 1)=134£902:5(T=0e25)=3e97¢2FS(T=0645)=1477>
E AESAUT=C4CE)=0,F ¢ apRS(T=R,F")+81,%
GC Y0 17
€ MPAXZSLTFCCTa(={ 6 GTO2CEFmla(T=14440017)40,=L344C]E~]»
L RS (Tl g7r1%C o0 ot eT18520=202E S UT=167e343)4047T71776GE =302
L AT ST s I el Ta) o0 SERS5L19BE="oA S (Tw251% 5042)¢061260°4]1 =G
C AEC(T=208 P e’ Y1022,4TT75)41.0
1¢C TF(MMAY GTLN) £ TC 18
0O 11 I:=FMPAXGA
11 "ltlel)=tam?

MM VAN =1
MIZPPAX
12 ¥1=M=1

CALCULATE THE FATIC I(MeX)/T1(M=-1eX)

L=Ze02SCFIGTef o

FATIO=r L0

0O 13 I=1.L

FLOT=2ethelL=1)

RATINS Y/(FILCTeYeRETIO)
17 (CMNTINLY

CrPFUTE FU(M)oF(V=1)90eeoF(N)e ANL ALPHA

=)ol =1¢

A7




w -
N
‘:;
o XX=2400/X
':] FH2=A
e FMI=A/RATIO
' IF(MeGT N} GC TC 14
BI(Pel)=FM2
A BI(MY=Fm}
" 60 TO 15
‘ 18 IF(MILEGeN) EI(N1)ZFM]
[ 15 ALPHA=FM]1eFM2
A 00 16 I=1eM]
MIz=M-]
FMOzMTeXXeFMIeFM2
v IF(MILLE«N1) BI(MI)=FVO
"y ALFHAZALDHASFMO
o FMO=FM]
s 16 FM1=FMO
B ALPHA=2 .CGeALFHA=FMQ
' C
c CALCULATE THE VALUES F DEYE(=X)eT(KoeX)oF=0yNs
C
" IFCALFHALEAMAY) GO TC 1p
A A=LMINeLLFHA
" 17 IFtPIIN2)GToA) GO TO 18
,Q BIIN2)=0.CC
1 N2ZN2 =1
co T0 17
" 16 BLPHAZ1 [C(/ALPHA
KH DG 19 I=1eAN2
¥ 19 BICI)=BI(I)eALPFA
e RE TURN
N END
} c
SUBECUTINL RTIPIIHGDELH gtC gl ePeFile*22)
¥ C
§ c CALCULATES PAYLEIGH TRAMSITION FROBACILITIFS P11 & F22.
W C
L r INFUT VARIAPLES
by c NH = & OF TPTEFVALS CF FUMPMY WfVE HFIGHT VARJAFLE HI & 2
- ¢ CELH = LZLTA INCREMENT c:TWEEM SUCCFSSIVE H1 & M. WhVE KEIGHTS
i C FC = CUTCFF CR THFTSHCLD WAVE HEIGHTe ALSO He
" c G = RAYLEIGH 1-D PRCKACLILITY CENSITY FUNCTICN 7C(H1)
. ¢ P = RAYLEIGH 2-D JOINT PRCEAPILITY PENSITY FUNCTION PUHIoH2)
» C
*$ c CUTPUT VAFIAELFS
W r F11 = TRANSITICA PROCAETLITYe NTITHE R H1 MOR M2 FXCFTLS THKFSHOLL
* o BPVE *TIGFT HC
c F22 = TRANSITIGN PROFARILITYe ECTH H1 & k2 EXCEE[ THFESHLLD wAVE
c WAVE CFIGKT MC
a: Cc
K REEL CCFC1)
" REAL PCEN1e5CI)
i“ C
N c P11 TPANSTTION TROEAEILITY
L4 r
~ A= 1
{: NU = H% 7/ TELH
' CALL RTFIUNLOALSLELFoliaboF11)
) c
4 c P27 TRARSITION PPCEABILITY
K c
XY
AN
%
¥
o A8
ls"
s
|

~ A . .y " o~ " ;
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“’\," - deadbtende i Buiiad -va
“ o
W
1!
o
A NL = MC /CELH
X NU = NH ¢ 1
- CALL RTFI(NLoNUGDELHyGoPoP22)
. c
] RETURN
Ay END
{2
fﬁx c
o SUHROUTINE RTPI(NL eNUsCELHoGoP ¢PROE)
c
',f c INTEGRATES 1-C & 2-D RAYLEICH FFOBABILITY DENSITY FUNCTIONS
c GCH1) & P(H14H2)
c
2 ¢ INPUT VARIABLES
X! c NL = LOWER INTEGRATIGN LIMIT ARRAY ELEMENT
N c N = UPPER INTEGRATION LIMIT ARRAY CLEMENT
KR C DELH = DELTA INCREMENT PETWEEN SUCCESSIVE H1 Of h? WAVE FEICGHTS
. ¢ P = RAYLEICH 2D JOINT PRCEABILITY PENSITY FUKCTION P(F1¢H2)
c a = RAYLEICH 1-C PROEAPILITY CENSITY FUNCTION GCH1)
c
KN c DUTPUT VARIABLFS
.5 ¢ PRGE = TRANSITICN FROEAEILITYe FITHER F11 OP F22
\ c
;' REAL P(S01+501)
K REAL G(S01)4PH1(S01)¢PHZ(E01)¢2(501)
. c
\ ¢ f=C RAYLEIGh JOINT FROSEBILYITY LENSITY FUNCTICN INTEGRAL
o c IN NUMERETCKR
; c
Y, M =
+
¢ SHIFT PDF TO DULMMY ARRAY Ph>
'y ce I=NLoNU
T S
. CO  J=NLeNU
ot LT R |
10 PH2(N) = P(IeJ)
. END 00
) ¢ IPTEGFATE IN F2 LIRECTION & (HEATE NEW DUMMY ARRAY PH1
JEA ANCIM = N
2L CALL QSFULELRnePH2 92 oALIM)
/ LI A
] FHI(M) = Z(NUIM)
o FNC 00
z:ﬁ ¢ INTEGRATE IN W1 CIRECTICN USINC LUMMY ARRAY PH1
‘ NBIY = v
1)
0 COLL GSFETELHaFFLyioNRIM)
) SUMA = Z(NCIM)
@ r
:‘ﬁ s 1-0 PAYLEIGk FRCBABILITY CENSITY FUNCTICM ILTEGRAL IN DENCH INATCR
1 ~
Hy' ~
.’, r SHIFT FDOF TC CUMMY ARRAY PH1
Fagt N=0D0
"y DO I=zhLgNU
%, ". = l‘ * 1
f.f EHICN) = GCI)
P ENC DO
o r INTEGRATE TN H] TIFFCTICN UTING DUMMY ARRAY PHI
" NCIM = A
o CALL CSF(ZELHeFH19ZgNIIM)
3& SUME = Z(NCI™)
.y ~
o
e
x::’:
;):;: A9
!_"

vt}
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TRANSITION PROZAEBTILTYTY
PRCB = SUMN / SI'mD

RETURN
END

SULROUTINE QSF(leYeZeNDIM)

(AN RENNNENENNNRIENNEENENNEEN NN NENNEEENE N NN ENENESNNXE RN R NN NNNEN N NY NN N YN
SUBRCUTINE QSF
PURP(SE
Tu COMPUYF THE VECTO® OF INTEGRAL VALUES FCR # GIVEN
tPUILISTANT TAELE OF FUNCTION VALUES.

USAGE
CALL QSF (FPeYeZoNTIM)

TESCRIPTICN CF PARBMETERS

+ « THE INCREMENT OF ARCUMENT VALUES,
Y = THE INFUT VECTCR CF FUNCTIGMN VALUES,
7 = THE PESULTIMNC VECYOR OF INTEGRAL VALLESe. Z MAY EF

TCEMTICAL WITH Y.
NTIM - THE DIMFASIGN OF VECTORS Y AMD 2.

PEMASKS
NC ACTICMN IN CASE NDIM LESS THAN 2,

SUERQUTIMES ANMC FUMCTICKN SUSFRCGRAMS FEQUIRED
NONE

METWCD

CEGINNING WITH 2€1)=0y EVALUGTICN OF VECTCR 7 IS LCMAF ©Y

MEANS CF SIMFSONS RULF TCCETHER WITh AFWTONS 7/F RULL OF A

CCMETMATICE CF TPEST TWO FULESe TPUMC TION EFROR TS CF

CROEF Hee' (Jete FOURTH CHRIFR METHOD) e ONLY N CaASE NCIM=3

TOUMCATIVS ECPGR fF 212) IS OF ORISP Heand,

FCk SEFESCNCES "EE

€1) Foet ot ILCEFRANT e IANTRCLUCTIGN 10 NULMERICAL ANALYS1S
wrCR8W=HILLy NEW YORK/TOPONTO/LONTONe 1S%€y FFeTl=-T¢€.

(Z) Fo2UFRMUFFKLy PFAXTISCHE MPATHEMATIK FUSR IFCENISURE UND
F+YSIFERe SPPINGiFe tERLIN/GTDETTINGEN/HEITELGERGe 1€ 3,
’ "Ao2lh‘?2lo

UIVENSTON Y1) 2(1)

AEIS R AR RYS
TEANCI™=t) TeE0

NCIM IS GREZTER THAN ¢o PRLPAFATIONS OF INTEGRATION LOCE
SUY1=Y(T)ev(2)

SUMI=SUMIeSLM]

SUMIZHTe(Y(1)e LPleY(?))

ALY 1zYC4)eY(4)

AUX1=AUX]1e2UX]

AUYI=SUMIer TolY(R)eAUYLIeY(TY)

AUNIZHT (Y1) 07 kTHe(Y(2)eY (T ) )2 C2C2 (Y)Y (L))eN(E))

Al0
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SYM2=y(S)eyv(E)

SUM2zSUMReSUM2
SUM2zAUXN2=-HT (Y (8)eSUM2eY (())
2¢1)=0¢

AUX=Y(3)eY(3)

AUXZ=AUX*AUYX
2€2)=SUM2=aHTe(Y(2)eAUXSYIAN))
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Symbol

Description

DELH

HM
HC
HU

H1

JIM
J2M

NH

NL
NU
P(HI,H2)

PHR(J!)

PI

PROB
PTR(J2)
P11

P22

Q(H1)

RHH1
SIGJ1
SI1IGJ2

Y
Z

Delta wave height increment between successive Hl or H2 wave
heights, controls upper wave height integration limit, HU
= NH * DELH in transition probabilities

Increment of argument values (i.e. X-array) for calculating
integral

Mean wave height
Cutoff or threshold wave height

Upper wave height integration limit
HU = NH * DELH

Dummy wave height variable

Dummy wave height variable

Mean run length for run of high waves
Mean run length for total run
Correlation parameter

Total number of wave height measurements or intervals of dummy
wave height parameters Hl or H2 between zero and upper wave
height HU in transition probabilities

Lower integration limit array element
Upper integration limit array element

2-D Rayleigh joint probability density function for successive
wave heights

Probability of run length having length of JlI for run of high
waves

3.14159...
Dummy transition probability, either P11l or P22
Probability of run length having length of J2 for total run

Transition probability, neither Hl nor H2 exceeds threshold wave
height HC

Transition probability, both Hl and H2 successive wave heights
exceed threshold wave height HC

1-D Rayleigh probability density function for individual wave
heights

Correlation coefficient

Standard deviation of run length for run of high waves
Standard deviation of run length for total run
Function values (i.e. Y-array) to be integrated

Vector array of integrated values
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Subroutine BESI

Description: Calculates value of Bessel Function I, Dexp(-X) * I(K,X)
where T is Bessel function of non-negative integral
order K=0, N and non-negative real argument X. All
calculations are in double precision. National
Research Council of Canada (NRCC) Scientific Library
Subroutine.

Calling Statement: SUBROUTINE BESI (N,X,BI,LOG)

Arguments:

N I*4 Order of Bessel Function I, N = 0 for zero order (used
here)

X R*8 Argument of Bessel Function I

BI R*8 I-D array containing value of function Dexp(-X) * I(K,X)

in its K+1 element for K=0,N. Dimension of BI in call-
ing program must be at least N+, equals 1 for N=0 for
modified zeroth order

LOG I*2 Logical unit number of error message when X<0 or N<O

Called By: Subroutine RJPDF
Calls To: None
Reference: NRCC Computation Center

Subroutine HRUN

Description: Calculates high run group statistics of probabilities for
different run lengths, mean run length, and standard
deviation of run length.

Calling Statement: SUBROUTINE HRUN (P22,PHR,JIM,SIGJ1)

Arguments:

P22 R*4 Transition probability, both Hl and B2 successive wave
heights exceed threshold wave height HC

PHR R*4 Probability of run length having length of J1, P1(J)

J1M R¥*4 Mean run length for a run of high waves

SIGJ1 R*4 Standard deviation of run of length Jl for run of high
waves

Called By: Program KIMURS

Calls To: None

References*: Van Vledder (1983a,b)
Kimura (1980)
Goda (9185)

* References in appendixes are cited in References at the end of the main
text,
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o Subroutine INPUT
Eéi Description: Queries user for five input parameters for Kimura's wave

Y group analysis,

Calling Statement: SUBROUTINE INPUT(RHH1,NH,DELH,HM,HC)

)
g%f Arguments:
1
h ) RHH1 R*4 Correlation coefficient
f$ NH I*2 Total number of wave height measurements or
LY total number of intervals of dummy wave height
i?} parameters Hl and H2 between zero and upper wave height
;g; HU in transition probabilities
tattg DELH R*4 Delta wave height increment, controls upper wave height
;5& integration limit, HU = NH % DELH in transition
qu probabilities
e HM R¥*4 Mean wave height
HC R*4 Cutoff or threshold wave height

o
}ﬁ? Called By: Program KIMURS
H
_s& Calls To: None
(AN
4£§ Reference: None
ry
e Subroutine KAPPA
s Description: Calculates correlation parameter Kappa given correlation
?f, coefficient using series approximation method of Battjes
e for Complete Elliptic Integrals of 1st & 2nd kind.
. Calling Statement: SUBROUTINE KAPPA (RHHI,K)
Cpe
lg' Arguments:
)
? RHH1 R*4 Correlation coefficient
# K R*4 Correlation parameter
. 1]
P Called By: Program KIMURS
%;' Calls To: None

()
:Q& Reference: Van Vledder (1983a,b)
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f:::' Subroutine OUTPT
ﬁﬁ Description: Outputs results from Kimura's algorithms for calculated
ot group run length statistics to disk file, logical
) unit 2, KIMUR,OUT.
;2“ Calling Statement: SUBROUTINE OUTPT(RHH1,NH,DELH,HM,HC,K,Q,P,P11,P22,PHR,
o J1M,SIGJ1,PTR,J2M,S1GJ2) |
Si Arguments:
- RHH1 R*4 Correlation coefficient
; NH I*2 Total number of wave height measurements
L% Total number of intervals of dummy wave height parameters
Qq Hl and H2 between zero and upper wave height HU in !
G transition probabilities 4
fq DELH R*4 Delta wave height increment between successive Hl1 and H2
* dummy wave heights, controls upper wave height integra-
N tion 1imit, HU = NH * DELH in transition probabilities
s HM R*4 Mean wave height
Qf BC R*4 Cutoff or threshold wave height
%) Q R*4 Rayleigh one-dimensional (1-D) PDF Q(Hl)
e P R*4 Rayleigh two-dimensional (2-D) PDF P(Hl,H2)
o P11 R*4 Transition probability, neither Hl nor H2 successive wave
height exceeds threshold wave height HC
{q P22 R*4 Transition probability, both Hl and H2 successive wave
o heights exceed threshold wave height HC
ja PHR R*4 Probability of run length having length of J1, P1(J)
*& JIM R*4 Mean run length for a run of high waves
! SIGJ1 R*4 Standard deviation of run of length Jl for run of high
" waves
it PTR R*4 Probability of total run length having length of J2, P2(J)
55 J2M R*4 Mean total run length
?‘ SIGJ2 R*4 Standard deviation of run of length J2 for total run
gﬁ length
3 Called By: Program KIMURS
is. Calls To: None
ér‘ Reference: None
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Subroutine QSF

Description:

Computes vector of integral values for a given equidistant
table of function values, Computes integral of function
contained in array Y of dimension NDIM for equidistant
X-array values spaced H apart using combination of
Simpson's and Newton's 3/8 Rules.

Calling Statement: SUBROUTINE QSF(H,Y,Z,NDIM)

Arguments:
H R*4
Y R*4
Z R*4
NDIM I%*2
Called By:
Calls To:
References:

Increment of argument values, DELH for x-axis array

Input vector of function values

Resulting vector of integral values, contains integrated
area under curve represented by array Y

Dimension of vectors Y and Z

Subroutine RTPI
None

NRCC Computation Center
Hildebrand (1956)
Zurmehl (1963)

Subroutine RJPDF

Description:

Calculates 2-D, joint, or Bivariate Rayleigh Probability
Density Function P(H1,H2) based on Kimura's theory.
Uses modified Bessel function of zero order.

Calling Statement: SUBROUTINE RJPDF(NH,DELH,HM,K,P)

Arguments:
NH I*2
DELH R*4
HM R*4
K R*4
P R*4
Called By:
Calls To:

References:

Total number of intervals of dummy wave height parameters
Hl and H2 between zero and upper wave height HU in
transition probabilities

Delta wave height increment between successive Hl and H2
dummy wave heights, controls upper wave height integra-
tion limit, HU = NH * DELH in transition probabilities

Mean wave height

Correlation parameter

2-D Rayleigh PDF P(H1,H2)

Program KIMURS
Subroutine BESI (NRCC Scientific Library Subroutine)

Van Vledder (1983a,b)
Kimura (1980)
Goda (1985)

C5



Subroutine RPDF

Description:

Calling Statement:

Arguments:

NH I*2
DELH R*4
HM R*4
Q R*4

Calculates l-D Rayleigh Probability Density Function (PDF)
Q(Hl) using numerical integration.

SUBROUTINE RPDF(NH,DELH,HM,Q)

Tctal number of intervals of dummy wave height parameter
Hl between zerc and upper wave height HU in transition
probabilities

Delta wave height increment between successive Hl wave
heights, controls upper wave height integration limit,
HU = NH * DELH in transition probabilities

Mean wave height

1-D Rayleigh PDF

Called By: Program KIMURS

Calls To: None

References: Van Vledder (1983a,b)
Kimura (1980)
Goda (1985)

Subroutine RTP

Description:

Calling Statement:

Arguments:

NH 12
DELH  R*4
HC R*4
Q R*4
P R*4
P11 R*4
P22 R*4

Calculates Rayleigh Transition probabilities P11l and P22
given 1-D and 2-D Rayleigh PDF's.

SUBROUTINE RTP(NH,DELH,HC,Q,P,P11,P22)

Total number of intervals of dummy wave height parameters
Hl and H2 between zero and upper wave height HU in
transition probabilities

Delta wave height increment between successive Hl and H2
dummy wave heights, controls upper wave height integra-
tion limit, HU = NH * DELH in transition probabilities

Cutoff or threshold wave height

Rayleigh 1-D PDF Q(H1)

Rayleigh 2-D PDF P(Hl,H2)

Transition probability, neither Hl nor H2 successive wave
height exceeds threshold wave height HC

Transition probability, both Hl1 and H2 successive wave
heights exceed threshold wave height HC

Called By: Program KIMURS
Calls To: Subroutine RTPI

References: Van Vledder (1983a,b)
Kimura (1980)
Goda (1985)
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Subroutine RTP1

Description:

Calling Statement:

Arguments:

NL I%2
NU I*2
DELH R*4
P R*4
Q R*4
PROB R*4

- TP T T T

Integrates 1-D and 2-D Rayleigh PDF Q(Hl) and P(H1l,H2),
respectively,

SUBROUTINE RTPI(NL,NU,DELH,Q,P,PROB)

Lower integration limit array element

Upper integration limit array element

Delta wave height increment between successive Hl or H2
dummvy wave heights, controls upper wave height integra-
tion limit, HU = NH * DELH in transition probabilities

2-D Rayleigh PDF P(HI1,H2)

1-D Rayleigh PDF Q(H1)

Transition Probability, either Pll or P22

Called By: Subroutine RTP
Calls To: Subroutine QSF (NRCC Scientific Library Subroutine)

References: Van Vledder (1983a,b)
Kimura (1980)
Goda (1985)

Subroutine TRUN

Description:

Calling Statement:

Arguments:

P11 R*4
P22 R*4
PTIR R¥*4
J2M R*4
SIGJ2 R*4

Calculates total run group statistics of probability for
different run lengths, mean run length, and standard
deviation of run length.

SUBROUTINE TRUN(P11,P22,PTR,J2M,SIGJ2)

Transition probability, neither Hl nor H2 successive wave
heights exceed threshold wave height HC

Transition probability, both Hl and H2 successive wave
heights exceed threshold wave height HC

Probability of total run length having length of J2, P2(J)

Mean total run length

Standard deviation of run of length J2 for total run
length

Called By: Program KIMURS

Calls To: None

References: Van Vledder (1983a,b)
Kimura (1980)
Goda (1985)
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Expectation operator

Complete elliptic integral of the second kind
Frequency variable

Wave height variable

Dummy wave height variable

Successive wave height variable

First of two successive wave heights dummy variable
Second of two successive wave heights dummy variable
Cutoff or threshold wave height

Mean wave height

Maximum wave height

Median wave height

RMS wave height

Significant wave height

Cutoff or threshold wave height

Modified Bessel function of zeroth order

Run length for run of high waves, i.e. 1,2,3,...11,12+
Run length for total run, i.e. 2,3,4,...11,12+

Mean run length for run of high waves

Mean run length for total run

Lag of autocorrelation function estimate

Complete elliptic integral of the first kind
Zeroth moment of time series of wave elevations
Total number of points in wave height time series

Probability that wave height H exceeds threshold wave height or
Markov Chain transition probability matrix

Transition probabilities--neither H1 nor H2 exceeds threshold
height

Transition probabilities--both H1 and H2 exceed threshold
height; simultaneous exceedance of threshold wave height by
both H, and H, waves

Joint or ;ivariatezRayleigh probability density function
Markov Chain distribution after n-time transitions
Initial Markov Chain distribution

Run length probability for run of high waves

Run length probability for total run
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Probability that wave height H does not exceed threshold wave
height

Goda's spectral peakedness factor

Rayleigh probability density function for individual wave
heights

Correlation coefficient for successive wave heights
Spectral estimate of the surface elevation

Mean zero-crossing wave period

Correlation parameter, equals 2p

Correlation parameter, equals «/2

3.14159, . .

Correlation coefficient for successive wave heights
Standard deviation of wave height time series
Standard deviation for run of high waves

Standard deviation for total run
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